A common fingerprint of a warmer world is a range shift, where the distribution of a species moves to higher altitudes or migrates toward the poles. A review of several hundred studies found an average shift of 17km poleward, and 11 metres upslope, every decade. However, if temperature changes are too intense or lead species to geographic dead ends, local extinctions occur in the heat.
In 2003, 80% of relevant studies found the fingerprints were seen among species, from grasses to trees and molluscs to mammals. Some migrated, some changed colour, some altered their bodies and some shifted their life cycle timings. A recent review of more than 100 studies found 8-50% of all species will be threatened by climate change as a result.
High temperatures and extinctions
Currently, we have a disturbingly limited knowledge of which biological traits are sensitive to climate change and therefore responsible for local extinctions. However, a potential candidate is male reproduction, because a range of medical and agricultural studies in warm blooded animals have shown that male infertility happens during heat stress.
However, until recently this had rarely been explored outside fruit flies in cold blooded animals. This is despite the fact that ectotherms – organisms that rely on heat in their environment to maintain a suitable body temperature – comprise most of biodiversity. Astonishingly, nearly 25% of all species are thought to be a beetle.
To look at the impact of heatwaves on reproduction, beetles were exposed to either standard control conditions or five-day heatwave temperatures, which were 5 degree C to 7 degree C above their preferred temperature. Afterwards, beetles mated and a variety of experiments looked for damage to their reproductive success, sperm form and function, and offspring quality.
We found that 42 degree C heatwave temperatures halved the number of offspring males could produce relative to 30 degree C, with some males failing to produce any and mature sperm in female storage also experiencing damage from heatwaves. However, the reproductive output of pairs where only the females endured a five-day heatwave event was similar in all temperatures.
Knowing what aspects of biology higher temperatures could compromise is essential to understanding how climate change affects nature. Hopefully, this new knowledge can help predict which species are most likely to be vulnerable, allowing conservationists to prepare for the trouble ahead.
Kris Sales, PhD Candidate in evolution, behaviour, ecology and entomology, University of East Anglia
This article is republished from The Conversation under a Creative Commons license. Read the original article.
To read the full story, Subscribe Now at just Rs 249 a month
Already a subscriber? Log in
Subscribe To BS Premium
₹249
Renews automatically
₹1699₹1999
Opt for auto renewal and save Rs. 300 Renews automatically
₹1999
What you get on BS Premium?
- Unlock 30+ premium stories daily hand-picked by our editors, across devices on browser and app.
- Pick your 5 favourite companies, get a daily email with all news updates on them.
- Full access to our intuitive epaper - clip, save, share articles from any device; newspaper archives from 2006.
- Preferential invites to Business Standard events.
- Curated newsletters on markets, personal finance, policy & politics, start-ups, technology, and more.
Need More Information - write to us at assist@bsmail.in