Such continuous but sporadic volcanic activity is a challenge for local emergency management.
But it’s also an issue for planes.
Captain Mike Galvin, head of fleet operations at Qantas Australia, told us volcanic ash in the air is a concern for airlines.
“The primary issue of volcanic ash for aeroplanes is the melting of ash in the engine turbines and the blocking of sensors that measure air speed and altitude. This can result in differences in flight information displayed to each pilot,” Galvin said.
“Qantas pilots are trained in these procedures during simulator training.
"Additional problems arise from reduced visibility due to the opacity of windscreens, and contamination of air entering the cabin.”
Currently the airline industry adopts a “no fly” policy for any visible or discernible volcanic ash.
“Engine and aeroplane manufacturers will not certify any level of ash tolerance,” Galvin said.
Ash is a serious problem for planes
Mt Agung is just the latest example of volcanoes interrupting flights in Indonesia and other countries.
In April 2010, an eruption of Eyjafjallajokull volcano in Iceland caused disruption to European air traffic for several days and cost the aviation industry an estimated $250 million per day.
Volcanic ash is made up of volcanic glass, crystals and other rock fragments less than 2mm in size. Ash from explosive eruptions can reach into the stratosphere – 10-20km above the volcano, which is within the cruising altitude of commercial aircraft – and be dispersed by winds up to thousands of kilometres away.
The 1982 eruption of Mt Galunggung in Java, Indonesia, clearly demonstrated the potential impact of volcanic ash to aircraft.
Flight BA009 en route to Perth from Kuala Lumpur flew through ash from the eruption. This caused sulfurous fumes to enter the cabin and the failure of all four engines, which fortunately restarted after a dive to lower altitude.
Keeping watch on volcanic ash in the skies
Following several aviation encounters with volcanic ash in the 1980s, the International Civil Aviation Organisation (ICAO), in collaboration with the World Meteorological Organisation (WMO), established nine volcanic ash advisory centres (VAACs), in Anchorage, Buenos Aires, Darwin, London, Montreal, Tokyo, Toulouse, Washington, and Wellington.
The Darwin VAAC covers the volcanically active regions of Indonesia, Papua New Guinea and the southern Philippines.
How airlines manage risk
Qantas’ Mike Galvin said he makes safety decisions based on information gathered by his team using all available sources.
With regards to Bali’s Mt Agung, Galvin said getting the timing right is an important aspect of the process.
“Here in Australia we might be 5-6 hours away from the ash in Indonesia so we need to make decisions several hours before the plane departs,” he said.
Galvin works closely with the Darwin and Tokyo VAACs.
“But we also have our own team of five meteorologists on constant shifts, who utilise information from other sources such as satellite images from the Japanese Himawari satellite,” he said.
“If a polygon of ash lies over the destination airport or on its approach or departure path, then we will not land.”
In the longer term, volcano science can help airlines understand more about volcanic ash hazards and risks to particular regions. For the Asia-Pacific region, average recurrence intervals have been calculated for each magnitude of volcanic eruption. This is measured by a Volcanic Explosivity Index (VEI).
To put VEI in context, the eruptions in the current phase of activity at Agung have been attributed a VEI of 3 on a logarithmic scale that runs from 0 to 8. It’s estimated we have 1.4 eruptions per year of this magnitude in the Asia-Pacific region.
This raises the question of how well prepared the aviation industry is, and countries as a whole, for the next even larger VEI 7 eruption, such as that at Tambora in Indonesia in 1815, which erupted 175 cubic km of fragmented volcanic material in just 24 hours.
Recent scientific research on Agung suggests that the molten rock (magma) feeding Agung volcano below may also be connected to the neighbouring volcano, Batur. The connectivity of magma plumbing systems may explain the joint eruptions of both Agung and Batur in 1963 and may present an additional volcanic hazard to consider for Bali.
To read the full story, Subscribe Now at just Rs 249 a month
Already a subscriber? Log in
Subscribe To BS Premium
₹249
Renews automatically
₹1699₹1999
Opt for auto renewal and save Rs. 300 Renews automatically
₹1999
What you get on BS Premium?
- Unlock 30+ premium stories daily hand-picked by our editors, across devices on browser and app.
- Pick your 5 favourite companies, get a daily email with all news updates on them.
- Full access to our intuitive epaper - clip, save, share articles from any device; newspaper archives from 2006.
- Preferential invites to Business Standard events.
- Curated newsletters on markets, personal finance, policy & politics, start-ups, technology, and more.
Need More Information - write to us at assist@bsmail.in