When it comes to children, it becomes difficult to detect depression and anxiety because they are mostly unable to voice their emotions. A recent study suggests that a machine learning algorithm can detect signs of anxiety and depression in the speech patterns of young children.
According to the study, this finding can potentially provide a fast and easy way of diagnosing conditions that are difficult to spot and often overlooked in young people.
Around one in five children suffer from anxiety and depression, collectively known as "internalizing disorders." But because children under the age of eight can't reliably articulate their emotional suffering, adults need to be able to infer their mental state and recognise potential mental health problems.
Waiting lists for appointments with psychologists, insurance issues, and failure to recognise the symptoms by parents all contribute to children missing out on vital treatment.
"We need quick, objective tests to catch kids when they are suffering. The majority of kids under eight are undiagnosed," said Ellen McGinnis, lead author the study published in the Journal of Biomedical Health and Informatics.
Early diagnosis is critical because children respond well to treatment while their brains are still developing, but if they are left untreated they are at greater risk of substance abuse and suicide later in life.
Also Read
Standard diagnosis involves a 60-90 minute semi-structured interview with a trained clinician and their primary caregiver.
The team of researchers has been looking for ways to use artificial intelligence and machine learning to make diagnosis faster and more reliable.
The researchers used an adapted version of a mood induction task called the Trier-Social Stress Task, which is intended to cause feelings of stress and anxiety in the subject. A group of 71 children between the ages of three and eight were asked to improvise a three-minute story and told that they would be judged based on how interesting it was.
The researcher acting as the judge remained stern throughout the speech and gave only neutral or negative feedback. After 90 seconds, and again with 30 seconds left, a buzzer would sound and the judge would tell them how much time was left.
"The task is designed to be stressful, and to put them in the mindset that someone was judging them," said McGinnis.
The children were also diagnosed using a structured clinical interview and parent questionnaire, both well-established ways of identifying internalizing disorders in children.
The researchers used a machine learning algorithm to analyze the statistical features of the audio recordings of each kid's story and relate them to the child's diagnosis.
They found the algorithm was highly successful at diagnosing children, and that the middle phase of the recordings, between the two buzzers, was the most predictive of diagnosis.
"The algorithm was able to identify children with a diagnosis of an internalizing disorder with 80% accuracy, and in most cases that compared really well to the accuracy of the parent checklist," said Ryan McGinnis.
It can also give the results much more quickly - the algorithm requires just a few seconds of processing time once the task is complete to provide a diagnosis.
The algorithm identified eight different audio features of the children's speech, but three, in particular, stood out as highly indicative of internalizing disorders: low-pitched voices, with repeatable speech inflections and content, and a higher-pitched response to the surprising buzzer.
Ellen McGinnis said these features fit well with what you might expect from someone suffering from depression.
"A low-pitched voice and repeatable speech elements mirror what we think about when we think about depression: speaking in a monotone voice, repeating what you're saying," said McGinnis.
Disclaimer: No Business Standard Journalist was involved in creation of this content