AI algorithms can now more accurately detect depressed mood using the sound of your voice, claim researchers.
The study published in the journal of the Canadian Conference on Artificial Intelligence builds on past research that suggested that the timbre of our voice contains information about our mood.
Using standard benchmark data sets, researchers developed a methodology that combines several machine-learning algorithms to recognize depression more accurately using acoustic cues.
The ultimate goal, researcher Eleni Stroulia explained, is to develop meaningful applications from this technology.
"A realistic scenario is to have people use an app that will collect voice samples as they speak naturally. The app, running on the user's phone, will recognize and track indicators of mood, such as depression, over time. Much like you have a step counter on your phone, you could have a depression indicator based on your voice as you use the phone," said Stroulia.
Approximately 11 per cent of Canadian men and 16 per cent of Canadian women will experience major depression in the course of their lives, according to the Government of Canada. And 3.2 million Canadian youth aged 12 to 19 are at risk of developing depression.
Such a tool could prove useful to support work with care providers or to help individuals reflect on their own moods over time. "This work, developing more accurate detection in standard benchmark data sets, is the first step," added Stroulia.