Researchers have discovered the 3D structure of an enzyme that cuts to ribbons the genetic material of viruses and helps body defend against bacteria.
Until now, the research community has lacked a structural model of the human form of this enzyme, known as RNase L, said Alexei Korennykh, an assistant professor of molecular biology and leader of the team that made the discovery.
He said that now that they have the human RNase L structure, we can begin to understand the effects of carcinogenic mutations in the RNase L gene. For example, families with hereditary prostate cancers often carry genetic mutations in the region, or locus, encoding RNase L.
The connection is so strong that the RNase L locus also goes by the name "hereditary prostate cancer 1." The newly found structure reveals the positions of these mutations and explains why some of these mutations could be detrimental, perhaps leading to cancer, Korennykh said. RNase L is also essential for insulin function and has been implicated in obesity.
The enzyme is an important player in the innate immune system, a rapid and broad response to invaders that includes the production of a molecule called interferon. Interferon relays distress signals from infected cells to neighboring healthy cells, thereby activating RNase L to turn on its ability to slice through RNA, a type of genetic material that is similar to DNA. The result is new cells armed for destruction of the foreign RNA.
The 3D structure uncovered by Korennykh and his team consists of two nearly identical subunits called protomers. The initial protomer latches onto one of the four "letters" that make up the RNA code, in particular, the "U," which stands for a component of RNA called uridine. The other protomer "counts" RNA letters starting from the U, skips exactly one letter, then cuts the RNA.
The work has been published in the journal Science.