It has been widely reported that bacteria will evolve to render antibiotics mostly ineffective by mid-century, and current strategies to make up for the projected shortfalls have not worked.
Doctors are often quick to prescribe strong antibiotics for mild infections, helping bacteria evolve resistance to even the most potent drugs.
One possible problem is that drug development strategies have focused on replacing antibiotics in extreme infections, such as sepsis, where every minute without an effective drug increases the risk of death.
"Antibiotic prescriptions against those smaller ailments account for about 90 percent of antibiotic use, and so are likely to be the major driver of resistance evolution," said Sam Brown, an associate professor at Georgia Tech.
Also Read
A broad-spectrum antibiotic can kill off more of the vulnerable, less dangerous bacteria, leaving the more dangerous and robust bacteria to propagate.
Often, superbugs have made their way into hospitals in someone's intestines, where they had evolved high resistance through years of occasional treatment with antibiotics for small infections.
Then those bacteria have infected patients with weak immune systems.
Furious infections have ensued, essentially invulnerable to antibiotics, followed by sepsis and death.
Drug developers facing dwindling antibiotic effectiveness against evolved bacteria have looked for multiple alternate treatments.
The researchers proposed a different approach. Developing non-antibiotic therapies for strep throat, bladder infections, and bronchitis could prove easier, thus encouraging pharmaceutical investment and research.
If doctors had enough alternatives to antibiotics for the multitude of small infections they treat, they could help preserve antibiotic effectiveness longer for the far less common but much more deadly infections, for which they are most needed.
Disclaimer: No Business Standard Journalist was involved in creation of this content