The new cubic antennas are envisioned for 'laboratories- on-a-chip' applications by their inventors, among whom is Debabrata Sikdar, a Monash University PhD student from Tripura and professors Wenlong Cheng and Malin Premaratne.
The newly-developed tiny optical antennas function like spotlights at the nanoscale.
The researchers said their newly-designed antennas did a better job than previous spherical antennas at directing an ultra-narrow beam of light where it is needed, with little or no loss due to heating and scattering.
In a paper published in Journal of applied Physics, Sikdar explained that the nanocubes can be arranged in a chain, where the space between them and their number can be adjusted to fine-tune the focused light beam's width and intensity as needed for various applications.
Also Read
As the separation between cubes increases, the angular width of the beam narrows and directionality improves.
"Unidirectional nanoantennas induce directionality to any omnidirectional light emitters like microlasers, nanolasers or spasers, and even quantum dots," Sikdar said.
"The cubic antennas focus light with precise control over direction and beam width," Sikdar said.
"They are like nanoscale spotlights. The new cubic nanoantennas have the potential to revolutionise the infant field of nano-electro-mechanical systems (NEMS).
"These unidirectional nanoantennas are most suitable for integrated optics-based biosensors to detect proteins, DNA, antibodies, enzymes, etc, in truly portable lab-on-a-chip platforms of the future," Sikdar said.
They can also potentially replace the lossy on-chip IC (integrated circuit) interconnects, via transmitting optical signals within and among ICs, to ensure ultrafast data processing while minimising device heating.