They used the bacterium Moorella thermoacetica to synthesise semiconductor nanoparticles in a hybrid artificial photosynthesis system for converting sunlight into valuable chemical products.
"We've demonstrated the first self-photosensitisation of a non-photosynthetic bacterium, M thermoacetica, with cadmium sulfide nanoparticles to produce acetic acid from carbon dioxide at efficiencies and yield that are comparable to or may even exceed the capabilities of natural photosynthesis," said Peidong Yang, from the University of California's Lawrence Berkeley National Laboratory.
"The bacteria/inorganic-semiconductor hybrid artificial photosynthesis system we've created is self-replicating through the bio-precipitation of cadmium sulphide nanoparticles, which serve as the light harvester to sustain cellular metabolism," Yang said.
Photosynthesis is the process by which nature harvests sunlight and uses the solar energy to synthesise carbohydrates from carbon dioxide and water.
More From This Section
Artificial versions of photosynthesis are being explored for the clean, green and sustainable production of fuels and plastics made from petroleum.
Researchers have been at the forefront of developing artificial photosynthetic technologies that can realise the full potential of solar-to-chemical synthesis.
"By inducing the self-photosensitisation of M thermoacetica with cadmium sulfide nanoparticles, we enabled the photosynthesis of acetic acid from carbon dioxide over several days of light-dark cycles at relatively high quantum yields, demonstrating a self-replicating route toward solar-to-chemical carbon dioxide reduction," Yang said.
As both an "electrograph" (meaning it can undergo direct electron transfers from an electrode), and an "acetogen" (meaning it can direct nearly 90 per cent of its photosynthetic products towards acetic acid), M thermoacetica serves as the ideal model organism for demonstrating the capabilities of this hybrid artificial photosynthesis system.
"Our hybrid system combines the best of both worlds - the light-harvesting capabilities of semiconductors with the catalytic power of biology," Yang said.
"In this study, we've demonstrated not only that biomaterials can be of sufficient quality to carry out useful photochemistry, but that in some ways they may be even more advantageous in biological applications," he said.