In hot conditions the membrane, which features a water repellent skin, can improve the efficiency of fuel cells by a factor of four, researchers said.
According to Aaron Thornton from Commonwealth Scientific and Industrial Research Organisation (CSIRO) in Australia, the skin works in a similar way to a cactus plant, which thrives by retaining water in harsh and arid environments.
"Fuel cells, like the ones used in electric vehicles, generate energy by mixing together simple gases, like hydrogen and oxygen. However, in order to maintain performance, proton exchange membrane fuel cells - or PEMFCs - need to stay constantly hydrated," Thornton said.
"A cactus plant has tiny cracks, called stomatal pores, which open at night when it is cool and humid, and close during the day when the conditions are hot and arid. This helps it retain water," CSIRO researcher Cara Doherty said.
Also Read
"This membrane works in a similar way. Water is generated by an electrochemical reaction, which is then regulated through nano-cracks within the skin. The cracks widen when exposed to humidifying conditions, and close up when it is drier.
Professor Young Moo Lee from Hanyang University, who led the research, said that this could have major implications for many industries, including the development of electric vehicles.
"At the moment, one of the main barriers to the uptake of fuel cell electric vehicles is water management and heat management in fuel cell systems. This research addresses this hurdle, bringing us a step closer to fuel cell electric vehicles being more widely available," said Lee.
The study was published in the journal Nature.