"Einstein's planet," formally known as Kepler-76b, is a "hot Jupiter" that orbits its star every 1.5 days. Its diameter is about 25 per cent larger than Jupiter and it weighs twice as much. It orbits a type F star located about 2,000 light-years from Earth in the constellation Cygnus.
The planet is tidally locked to its star, always showing the same face to it, just as the Moon is tidally locked to Earth. As a result, Kepler-76b broils at a temperature of about 1,982 degrees Celsius.
This effect has only been observed once before, on HD 189733b, and only in infrared light with the Spitzer Space Telescope. This is the first time optical observations have shown evidence of alien jet stream winds at work.
The two most prolific techniques for finding exoplanets are radial velocity (looking for wobbling stars) and transits (looking for dimming stars).
Also Read
The brightening results from photons "piling up" in energy, as well as light getting focused in the direction of the star's motion due to relativistic effects.
"This is the first time that this aspect of Einstein's theory of relativity has been used to discover a planet," said co-author Tsevi Mazeh of Tel Aviv University.
Although Kepler was designed to find transiting planets, this planet was not identified using the transit method. Instead, it was discovered using a technique first proposed by Avi Loeb of the CfA and his colleague Scott Gaudi (now at Ohio State University) in 2003.
Once the new planet was identified, it was confirmed by Latham using radial velocity observations gathered by the TRES spectrograph at Whipple Observatory in Arizona, and by Lev Tal-Or using the SOPHIE spectrograph at the Haute-Provence Observatory in France.
The study appears in The Astrophysical Journal.