In comparison to the planet named Kepler-421b, Mars orbits our Sun once every 780 days. Most of the 1,800-plus exoplanets discovered to date are much closer to their stars and have much shorter orbital periods.
The host star, Kepler-421, is located about 1,000 light-years from Earth in the direction of the constellation Lyra.
"Finding Kepler-421b was a stroke of luck," said lead author David Kipping of the Harvard-Smithsonian Centre for Astrophysics (CfA).
"The farther a planet is from its star, the less likely it is to transit the star from Earth's point of view. It has to line up just right," said Kipping.
More From This Section
As a result, this Uranus-sized planet is chilled to a temperature of minus 92.7 degrees Celsius.
As the name implies, Kepler-421b was discovered using data from NASA's Kepler spacecraft.
The spacecraft stared at the same patch of sky for 4 years, watching for stars that dim as planets cross in front of them.
The planet's orbit places it beyond the "snow line" - the dividing line between rocky and gas planets. Outside of the snow line, water condenses into ice grains that stick together to build gas giant planets.
Since gas giant planets can be found extremely close to their stars, in orbits lasting days or even hours, theorists believe that many exoplanets migrate inward early in their history.
Kepler-421b shows that such migration isn't necessary. It could have formed right where we see it now.
"This is the first example of a potentially non-migrating gas giant in a transiting system that we've found," said Kipping.
The finding appears in The Astrophysical Journal.