The demonstration of the first controlled flight of an insect-sized robot is the culmination of more than a decade's work, led by researchers at the Harvard School of Engineering and Applied Sciences (SEAS) and the Wyss Institute for Biologically Inspired Engineering at Harvard.
"This is what I have been trying to do for literally the last 12 years," said Robert J Wood, principal investigator of the National Science Foundation-supported RoboBee project.
Inspired by the biology of a fly, with submillimeter-scale anatomy and two wafer-thin wings that flap almost invisibly, 120 times per second, the tiny device not only represents the absolute cutting edge of micromanufacturing and control systems.
Flight muscles, for instance, don't come prepackaged for robots the size of a fingertip.
More From This Section
"Large robots can run on electromagnetic motors, but at this small scale you have to come up with an alternative, and there wasn't one," said co-lead author Kevin Y Ma, a graduate student at SEAS.
The tiny robot flaps its wings with piezoelectric actuators - strips of ceramic that expand and contract when an electric field is applied.
At tiny scales, small changes in airflow can have an outsized effect on flight dynamics, and the control system has to react that much faster to remain stable.
The robotic insects also take advantage of an ingenious pop-up manufacturing technique developed by Wood's team in 2011.
Sheets of various laser-cut materials are layered and sandwiched together into a thin, flat plate that folds up like a child's pop-up book into the complete electromechanical structure.