Nuclear fusion entails fusing atoms together to generate energy -- a process similar to that in the Sun -- as opposed to nuclear fission, where atoms are split, which entails worries over safety and long-term waste.
After spending a billion euros (USD 1.1 billion) and nine years' construction work, physicists working on a German project called the "stellarator" said they had briefly generated a super-heated helium plasma inside a vessel -- a key point in the experimental process.
"Everything went according to plan."
For all its promise, nuclear fusion has proven elusive and highly costly to achieve.
More From This Section
The idea is to heat atoms to temperatures of more than 100 million degrees Celsius (212 million degrees Fahrenheit) so that their nuclei fuse.
The fusion would take place in a special vacuum chamber where the atoms, in a hot ionised gas called a plasma, are held floating in place by superconducting magnets so that they do not touch the vessel's cold sides.
The German experiment, using a machine called Wendelstein 7-X, was aimed at seeing whether it was possible to heat helium atoms with a microwave laser and to briefly contain the plasma within the vessel.
The team will next try to extend the duration of the plasma and to find out the best way of producing it. Next year, it hopes to switch over to hydrogen, the actual target of the study, as opposed to helium.
Several countries are in the race to build a fusion reactor, including a multinational effort called the International Thermonuclear Experimental Reactor (ITER).
But plagued by technical problems and cost issues, it has yet to carry out its first experiment almost a decade after the project began.
Other far smaller experimental reactors are also being developed in the US, but funding has been a problem.
The Wendelstein 7-X will not produce energy.
Instead it hopes to sustain a plasma for 30 minutes, deemed to be proof that its technology can operate continuously, whereas a tokamak can only run in pulses without auxiliary equipment.