A spaser is a device similar to a laser and operating on the same basic principle.
However, to produce radiation the particles emitted are surface plasmons, as opposed to photons produced by a laser.
"The graphene spaser could be used to design compact spectral measurement devices capable of detecting even a single molecule of a substance, which is essential for many potential applications," said Alexander Dorofeenko, from Moscow Institute of Physics and Technology (MIPT).
Scientists have long been fascinated by the potential applications of a quasiparticle called the plasmon, a quantum of plasma oscillations.
Also Read
In the case of a solid body, plasmons are the oscillations of free electrons.
Of special interest are the effects arising from the surface interactions of electromagnetic waves with plasmons - usually in the context of metals or semimetals, as they have a higher free electron density.
Such measurements are beyond what any conventional (classical) optical devices can achieve.
However, plasmons in metals tend to lose energy quickly due to resistance, and for this reason they are not self-sustained, ie they need continuous excitation.
Scientists are trying to tackle this issue by using composite materials with predefined microstructure, including graphene.
Although, plasmonic devices have seemed an exciting prospect to pursue from the start, to take advantage of them, it was first necessary to find out whether the technology behind them was feasible.
Researcher formulated and solved the necessary equation which led them to develop a quantum model that predicts plasmonic behaviour in graphene.
As a result, the scientists described the operation of a surface-plasmon-emitting diode (SPED) and the nanoplasmonic counterpart of the laser - known as the spaser - whose construction involves a graphene layer.
The research was published in the journal Physical Review B.
Disclaimer: No Business Standard Journalist was involved in creation of this content