Physicists describe the smallest constituents of nature - elementary particles and forces acting between them using a set of theories known as "the Standard Model".
This model was developed in the 1970s and has been very successful, particularly in predicting the existence of undiscovered particles.
In recent decades, particle physicists have discovered one of the predicted particles in the Standard Model after another in their particle accelerators.
The last in the series was the Higgs particle, the existence of which was confirmed by the scientists at the particle accelerator Large Hadron Collider (LHC) at CERN in 2012. This completed the Standard Model.
Also Read
Many particle physicists are therefore working on the development of new, more comprehensive models.
One of them is Christoffer Petersson, who carries out research in theoretical particle physics at Chalmers University of Technology in Sweden and the Universite Libre in Belgium. Together with two research colleagues he has proposed a particle model based on what is known as supersymmetry.
This model contains more elementary particles than the Standard Model, including dark matter particles. In addition, the model gives the Higgs particle different properties than the Standard Model predicts.
However, these properties are quite difficult to discover - you have to look for them specifically to have a chance of finding them.
But Petersson's model has met with a response at CERN. Two independent experimental stations - Atlas and CMS - at the LHC are now looking for the very properties of the Higgs particle his model predicts. If the properties are there, it is a clear indication that the model fits.
"It's a dream for a theorist in particle physics. LHC is the only place where the model can be tested. It's even nicer that two independent experiments are going to do it," said Petersson.
"We are already in full swing with new analyses in which we are testing his model in other ways and with more data. We congratulate Christoffer Petersson for having done an important job," said Zeynap Demiragli at the CMS experiment at CERN.
"If the model is found to fit, it would completely change our understanding of the fundamental building blocks of nature," Petersson added.