As Zika spreads throughout the world, the call for rapid development of therapeutics to treat Zika rings loud and clear, researchers at Duke-NUS Medical School (Duke-NUS) in Singapore said.
Previously, C10 was identified as one of the most potent antibodies able to neutralise Zika infection.
Now, Lok Shee-Mei and her team at the Emerging Infectious Disease Programme of Duke-NUS have taken it one step further by determining how C10 is able to prevent Zika infection.
During docking, the virus particle identifies specific sites on the cell and binds to them. With Zika infection, docking then initiates the cell to take the virus in via an endosome - a separate compartment within the cell body.
Also Read
Proteins within the virus coat undergo structural changes to fuse with the membrane of the endosome, thereby releasing the virus genome into the cell and completing the fusion step of infection.
Using a method called cryoelectron microscopy, which allows for the visualisation of extremely small particles and their interactions, the team visualised C10 interacting with the Zika virus under different pHs, so as to mimic the different environments both the antibody and virus will find themselves in throughout infection.
Without fusion of the virus to the endosome, viral DNA is prevented from entering the cell and infection is thwarted.
"Hopefully, these results will further accelerate the development of C10 as a Zika therapy to combat its effects of microcephaly and Guillain-Barre syndrome. This should emphasise the need for further studies of the effect of C10 on Zika infection in animal models," said Lok.
These findings suggest that C10 may be developed as a therapy for Zika infection, and should be further explored. In addition, disrupting fusion with C10 may prove to be more effective in preventing Zika infection compared with therapies that attempt to disrupt docking.
This is because the fusion step is critical for Zika infection, while the virus may develop other mechanisms to overcome disruptions to the docking step, researchers said.
Disclaimer: No Business Standard Journalist was involved in creation of this content