Researchers who used CRISPR/Cas9 to mutate HIV-1 within cellular DNA found that while single mutations can inhibit viral replication, some also led to unexpected resistance.
Researchers from McGill University, University of Montreal in Canada, Chinese Academy of Medical Sciences and Peking Union Medical College in China believe targeting multiple viral DNA regions may be necessary for the potential antiviral aspect of CRISPR/Cas9 to be effective.
Upon entry into a cell, HIV's RNA genome is converted into DNA and becomes entwined with the cellular DNA. From here, CRISPR/Cas9 can be programmed to target a DNA sequence and cleave viral DNA.
"When we sequence the viral RNA of escaped HIV, the surprise is that the majority of the mutations that the virus has are nicely aligned at the site where Cas9 cleaves the DNA, which immediately indicates that these mutations, instead of resulting from the errors of viral reverse transcriptase, are rather introduced by the cellular non-homologous end joining machinery when repairing the broken DNA," said Chen Liang, senior investigator at the Jewish General Hospital.
Also Read
The study serves as a cautionary tale for those who hope to apply CRISPR/Cas9 as an antiviral.
Liang does not believe the effort is futile, however, as there are strategies that could overcome this limitation.
For example, targeting multiple sites with CRISPR/Cas9 or using other enzymes aside from Cas9.
The study was published in the journal Cell Reports.