A study led by Boston University School of Medicine researchers has differentiated induced pluripotent stem (iPS) cells into these cell types, which are typically obtained through blood donations.
This finding could potentially reduce the need for blood donations to treat patients requiring blood transfusions and could help researchers examine novel therapeutic targets to treat a variety of diseases, including sickle cell disease.
IPS cells are derived by reprogramming adult cells into a primitive stem cell state that are capable of differentiating into different types of cells.
In this study, the iPS cells were obtained from a Cell Bank. The cells were exposed to growth factors in order to coax them to differentiate into red blood cells and platelets using a patented technology. These stem cells were examined in depth to study how blood cells form in order to further the understanding of how this process is regulated in the body.
More From This Section
In this study, however, the team noted an exponential increase in the production of functional red blood cells and platelets in a short period of time, suggesting that AhR plays an important role in normal blood cell development.
"This finding has enabled us to overcome a major hurdle in terms of being able to produce enough of these cells to have a potential therapeutic impact both in the lab and, down the line, in patients," said George J Murphy, assistant professor of medicine at BUSM and co-director of the Center for Regenerative Medicine (CReM).