Researchers developed a relatively low-temperature process to convert certain kinds of plastic waste into liquid fuel as a way to re-use plastic bags and other products.
Among the plastic waste is the common polymer, low-density polyethylene (LDPE), which is used to make many types of container, medical and laboratory equipment, computer components and, of course, plastic bags.
Recycling initiatives are in place in many parts of the world, but much of the polyethylene waste ends up in landfill, dispersed in the environment or in the sea.
Given that most plastics are made from petrochemicals, this solution to plastic recycling brings the life-cycle full circle allowing a second use as an oil substitute.
More From This Section
The process reported in the International Journal of Environment and Waste Management, could, if implemented on a large enough scale, reduce pressures on landfill as well as ameliorating the effects of dwindling oil supplies in a world with increasing demands on petrochemicals for fuel.
This releases large quantities of much smaller, carbon-rich molecules.
The team used the analytical technique of gas chromatography coupled mass spectrometry to characterise these product molecules and found the components of their liquid fuel to be mainly paraffins and olefins 10 to 16 carbon atoms long.
This, they explain, makes the liquid fuel very similar chemically to conventional petrochemical fuels.
In terms of the catalyst, Kaolin is a clay mineral - containing aluminium and silicon. It acts as a catalyst by providing a large reactive surface on which the polymer molecules can sit and so be exposed to high temperature inside the batch reactor, which breaks them apart.
In other words, for every kilogramme of waste plastic they could produce 700 grammes of liquid fuel. The byproducts were combustible gases and wax.
They could boost the yield to almost 80 per cent and minimise reaction times, but this required a lot more catalyst one kg of kaolin for every 2 kg of plastic.