Data from the Gaia-ESO project has provided evidence backing theoretically predicted divisions in the chemical composition of the stars that make up the Milky Way's disc - vast collection of giant gas clouds and billions of stars that give our galaxy its 'flying saucer' shape.
The research suggests that stars in the inner regions of the galactic disc were the first to form, supporting ideas that our galaxy grew from the inside-out.
An international team of astronomers took detailed observations of stars with a wide range of ages and locations in the galactic disc to accurately determine their 'metallicity': the amount of chemical elements in a star other than hydrogen and helium, the two elements most stars are made from.
Consequently, older stars have fewer elements in their make-up - so have lower metallicity, researchers said.
More From This Section
The team have shown that older, 'metal-poor' stars inside the Solar Circle - the orbit of our Sun around the centre of the Milky Way - are far more likely to have high levels of magnesium.
The higher level of the element inside the Solar Circle suggests this area contained more stars that "lived fast and die young" in the past, researchers said.
This discovery signifies important differences in stellar evolution across the Milky Way disc, with very efficient and short star formation timescales occurring inside the Solar Circle; whereas, outside the Sun's orbit, star formation took much longer.
"We have been able to shed new light on the timescale of chemical enrichment across the Milky Way disc, showing that outer regions of the disc take a much longer time to form," said Maria Bergemann from Cambridge University's Institute of Astronomy, who led the study.