Mini mid-brains provide next generation platforms to investigate human brain biology, diseases and therapeutics.
These mini mid-brain versions are three-dimensional miniature tissues that are grown in the laboratory and have certain properties of specific parts of the human brains, scientists from Genome Institute of Singapore (GIS) and Duke-NUS Medical School said.
This is the first time that the black pigment neuromelanin has been detected in an organoid model. The study also showed functionally active dopaminergic neurons.
It contains special dopaminergic neurons that produce dopamine - which carries out significant roles in executive functions, motor control, motivation, reinforcement, and reward, they said.
More From This Section
High levels of dopamine elevate motor activity and impulsive behaviour, whereas low levels of dopamine lead to slowed reactions and disorders like Parkinson's Disease (PD), which is characterised by stiffness and difficulties in initiating movements.
Also causing PD is the dramatic reduction in neuromelanin production, leading to the degenerative condition of patients, which includes tremors and impaired motor skills, scientists said.
Using stem cells, scientists grew pieces of tissue, known as brain organoids, measuring about 2 to 3 millimetres long. These organoids contain the necessary hallmarks of the human midbrain, which are dopaminergic neurons and neuromelanin.
These advanced mini versions of the human mid-brain will help researchers develop treatments and conduct other studies into PD and ageing-related brain diseases.
"It is remarkable that our mid-brain organoids mimic human mid-brain development. The cells divide, cluster together in layers, and become electrically and chemically active in three-dimensional environment like our brain," said Shawn Je assistant professor at Duke-NUS Medical School.
"The mid-brain organoids display great potential in replacing animals' brains which are currently used in research; we can now use these mid-brains in culture instead to advance our understanding and future studies for the disease, and perhaps even other related diseases," added Ng Huck Hui, GIS Executive Director.