Researchers found that the noble gas, which usually does not bond with other atoms, may chemically react with iron and nickel in Earth's core, where it is held.
Xenon is a noble gas, so, like other noble gases, such as helium and neon, it is mostly chemically inert. Scientists have long analysed xenon to study the evolution of Earth and its atmosphere, 'LiveScience' reported.
Strangely, atmospheric levels of xenon are more than 90 per cent less than scientists would have predicted based on levels of other noble gases such as argon and krypton.
Although some researchers have suggested that this "missing" xenon may have escaped from the atmosphere into space, the majority of scientists think it is hidden in the Earth's interior.
Also Read
However, investigators have long failed to find a way in which Earth might incorporate this gas into chemically stable compounds.
In 1997, scientists reported experiments that suggested xenon would not react with iron.
"Through a careful analysis of their work, however, we found that the experiment was carried out only up to 150 gigapascals, a pressure far from the Earth's inner-core pressure of 360 gigapascals," Ma said.
However, those prior studies assumed xenon would form a so-called "hexagonal close-packed lattice" - essentially, a lattice of atoms resembling a solid whose bottom and top faces are hexagons and whose side faces are rectangles.
This assumption was made because iron atoms normally form this kind of structure with other iron atoms.
However, Ma and his colleagues reasoned that, if the structures of iron-xenon compounds are different, they could form a compound.
The study is published in the journal Nature Chemistry.