The NASA experiments involved using continuous light on wheat which triggered early reproduction in the plants.
"We thought we could use the NASA idea to grow plants quickly back on Earth, and in turn, accelerate the genetic gain in our plant breeding programmes," said Lee Hickey, Senior Research Fellow at University of Queensland (UQ) in Australia.
"By using speed breeding techniques in specially modified glasshouses we can grow six generations of wheat, chickpea and barley plants, and four generations of canola plants in a single year - as opposed to two or three generations in a regular glasshouse, or a single generation in the field," Hickey said.
There has been a lot of interest globally in this technique due to the fact that the world has to produce 60-80 per cent more food by 2050 to feed its nine billion people, researchers said.
More From This Section
The speed breeding technique has largely been used for research purposes but is now being adopted by industry.
In partnership with Dow AgroSciences, the scientists have used the technique to develop the new 'DS Faraday' wheat variety due for release to industry this year.
"We introduced genes for grain dormancy so it can better handle wet weather at harvest time - which has been a problem wheat scientists in Australia have been trying to solve for 40 years," Hickey said.
"We have finally had a breakthrough in grain dormancy, and speed breeding really helped us to do it," he said.
UQ PhD student Amy Watson, a co-first author of the paper published in the journal Nature Plants, conducted some of the key experiments that documented the rapid plant growth and flexibility of the system for multiple crop species.