Researchers from Nanyang Technological University (NTU) in Singapore created micro-sized gas bubbles coated with cancer drug particles and iron oxide nanoparticles, and then used magnets to direct these bubbles to gather around a specific tumour.
Ultrasound was then used to vibrate the microbubbles, providing the energy to direct the drug particles into a targeted area. Microbubbles were then successfully tested in mice.
The new method may solve some of the most pressing problems faced in chemotherapy used to treat cancer, researchers said.
Typically, these drugs are flushed away quickly in organs such as the lungs and liver, limiting their effectiveness.
More From This Section
The remaining drugs are also unable to penetrate deep into the core of the tumour, leaving some cancer cells alive, which could lead to a resurgence in tumour growth.
"The first unique characteristic of our microbubbles is that they are magnetic. After injecting them into the bloodstream, we are able to gather them around the tumour using magnets and ensure that they do not kill the healthy cells," said Xu Chenjie from NTU.
"This helps to ensure that the drugs can reach the cancer cells on the surface and also inside the core of the tumour," he said.
"For anticancer drugs to achieve their best effectiveness, they need to penetrate into the tumour efficiently in order to reach the cystoplasm of all the cancer cells that are being targeted without affecting the normal cells," said Chia Sing Joo.
"If successful, I envisage it can be a good alternative treatment in the future, one which is low cost and yet effective for the treatment of cancers involving solid tumours, as it might minimise the side effects of drugs," he said.
Ultrasound uses soundwaves with frequencies higher than those heard by the human ear. It is commonly used for medical imaging such as to get diagnostic images, researchers said.