The man-made, small-molecule drug compound goes after a gene's ability to produce RNA molecules and certain proteins in melanoma tumors.
This gene activity, or transcription process, causes the disease to spread but the compound can shut it down. Up until now, few other compounds of this kind have been able to accomplish this.
"It's been a challenge developing small-molecule drugs that can block this gene activity that works as a signaling mechanism known to be important in melanoma progression," said Richard Neubig, professor at Michigan State University (MSU) in the US.
Scleroderma is a rare and often fatal autoimmune disease that causes the hardening of skin tissue, as well as organs such as the lungs, heart and kidneys.
More From This Section
The same mechanisms that produce fibrosis, or skin thickening, in scleroderma also contribute to the spread of cancer.
The findings are an early discovery that could be highly effective in battling the deadly skin cancer. It is estimated about 10,000 people die each year from the disease.
"One reason the disease is so fatal is that it can spread throughout the body very quickly and attack distant organs such as the brain and lungs," said Appleton.
Researchers found that the compounds were able to stop proteins, known as Myocardin-related transcription factors, or MRTFs, from initiating the gene transcription process in melanoma cells.
These triggering proteins are initially turned on by another protein called RhoC (Ras homology C) which is found in a signaling pathway that can cause the disease to aggressively spread in the body.
"We used intact melanoma cells to screen for our chemical inhibitors. This allowed us to find compounds that could block anywhere along this RhoC pathway," Neubig said.
Being able to block along this entire path allowed the researchers to find the MRTF signaling protein as a new target.
Appleton said figuring out which patients have this pathway turned on is an important next step in the development of their compound because it would help them determine which patients would benefit the most.