Researchers from the Icahn School of Medicine at Mount Sinai found how an abundant enzyme and synaptic gene affect a key reward circuit in the brain, changing the ways genes are expressed in the nucleus accumbens.
In a mouse model, the research team found that chronic cocaine administration increased levels of an enzyme called PARP-1 or poly(ADP-ribosyl)ation polymerase-1.
This increase in PARP-1 leads to an increase in its PAR marks at genes in the nucleus accumbens, contributing to long-term cocaine addiction.
Although this is the first time PARP-1 has been linked to cocaine addiction, PARP-1 has been under investigation for cancer treatment, researchers said.
Also Read
Nestler said that the research team is using PARP to identify other proteins regulated by cocaine. PARP inhibitors may also prove valuable in changing cocaine's addictive power.
"It is striking that changing the level of PARP-1 alone is sufficient to influence the rewarding effects of cocaine," said Kimberly Scobie, the lead investigator and postdoctoral fellow in Nestler's laboratory.
Researchers used chromatin immunoprecipitation sequencing to identify which genes are altered through the epigenetic changes induced by PARP-1.
Sidekick-1 has not been studied to date in the brain, nor has it been studied in relation to cocaine exposure.
Using viral mediated gene transfer to overexpress sidekick-1 in the nucleus accumbens, researchers found that this overexpression alone not only increased the rewarding effects of cocaine, but it also induced changes in the morphology and synaptic connections of neurons in this brain reward region.
The study is published in the journal Proceedings of the National Academy of Sciences.