The protein may offer a target for reining in the inflammatory response, which must be able to fight infection without damaging tissue.
NFATc3 is one of several related protein molecules known to play a role in regulating genes in the T and B cells of the immune system.
Ravi Ranjan, research scientist at the University of Illinois at Chicago College of Medicine, who is first author on the paper, and his collaborators wanted to know if NFATc3 also had any function in macrophages - specialised killer cells that hunt down, engulf and destroy marauding bacteria.
Macrophages are also important in reducing the inflammation in sepsis, an out-of-control reaction to infection that can cause organ failure and death.
More From This Section
When the researchers exposed macrophages to chemicals that signal a bacterial infection, they found that NFATc3 increasingly bound to genes that boost the production of nitric oxide synthase - the enzyme that makes nitric oxide.
The binding of NFATc3 suggests the molecule is turning on those genes and upping the production of nitric oxide. Macrophages deficient in NFATc3 produced much less nitric oxide synthase under the same conditions.
"We would expect these cells to be much less effective at killing bacteria and attenuating sepsis," said Ranjan.
To test this hypothesis, researchers then induced sepsis in mice that lacked the ability to make NFATc3. As expected, lung tissue from these mice had a much higher bacterial load than the lung tissue of septic mice that could produce NFATc3.
"Our study demonstrates that NFATc3 is required for macrophages to effectively fight infection, because without it, they can't make their primary bactericidal agent - nitric oxide," Ranjan said.
The study was published in the Journal of Innate Immunity.