Dark matter is thought to exist because of its gravitational effects on stars and galaxies, gravitational lensing (the bending of light rays) around these, and through its imprint on the Cosmic Microwave Background (the afterglow of the Big Bang).
Despite compelling indirect evidence and considerable experimental effort, no one has managed to detect dark matter directly.
Particle physics gives clues to what dark matter might be, and the standard view is that dark matter particles have a very large mass for fundamental particles, comparable to that of heavy atoms, researchers said.
They have proposed a new particle that has a mass only about 0.02 per cent that of an electron.
More From This Section
While it does not interact with light, as required for dark matter, it does interact surprisingly strongly with normal matter.
Indeed, in stark contrast to other candidates, it may not even penetrate Earth's atmosphere, researchers said.
A nanoparticle, suspended in space and exposed directly to the flow of dark matter, will be pushed downstream and sensitive monitoring of this particle's position will reveal information about the nature of this dark matter particle, if it exists, researchers said.
"Our candidate particle sounds crazy, but currently there seem to be no experiments or observations which could rule it out," said Dr James Bateman, from Physics and Astronomy at the University of Southampton and co-author of the study.
"At the moment, experiments on dark matter do not point into a clear direction and, given that also the Large Hadron Collider at CERN has not found any signs of new physics yet, it may be time that we shift our paradigm towards alternative candidates for dark matter," said Dr Alexander Merle, co-author from the Max Planck Institute in Munich, Germany.
The research is published in the journal Scientific Reports.