In 2020, NASA plans to launch a new Mars rover that will be tasked with probing a region of the planet scientists believe could hold remnants of ancient microbial life.
The rover will collect samples of rocks and soil, and store them on the Martian surface; the samples would be returned to Earth sometime in the distant future so that scientists can meticulously analyse them for signs of present or former extraterrestrial life.
Such "pristine" samples give scientists the best chance for identifying signs of former life, if they exist, as opposed to rocks whose histories have been wiped clean by geological processes such as excessive heating or radiation damage.
The team's technique centres on a new way to interpret the results of Raman spectroscopy, a common, non-destructive process that geologists use to identify the chemical composition of ancient rocks.
More From This Section
Raman spectroscopy measures the minute vibrations of atoms within the molecules of a given material.
As atoms and molecules vibrate at various frequencies depending on what they are bound to, Raman spectroscopy enables scientists to identify key aspects of a sample's chemical composition.
More importantly, the technique can determine whether a sample contains carbonaceous matter - a first clue that the sample may also harbour signs of life.
The researchers were able to estimate the ratio of hydrogen to carbon atoms from the substructure of the peaks in Raman spectra.
This is important because the more heating any rock has experienced, the more the organic matter becomes altered, specifically through the loss of hydrogen in the form of methane, researchers said.
The study was published in the journal Carbon.