Researchers from the University of Massachusetts Amherst used ultraviolet photolithographic patterning of photo-crosslinkable polymers to make reversibly self-folding origami structures on small length scales.
While the Japanese art of origami has been "a rich source of inspiration" for scientists working to construct such 3D forms, the limitation to simple shapes has held up development of new applications in areas such as biomimetic systems, soft robotics and mechanical meta-materials, especially for structures on small length scales where traditional manufacturing processes fail.
Now, however, a team led by Ryan Hayward has developed an approach that could open the door to a new wave of discoveries.
"The presence of gaps in the plastic layers allows for folding by a controlled amount in a specified direction, enabling the formation of fairly complex origami structures," Hayward added.
Also Read
The team uses a mask-less lithographic technique based on a digital micro-mirror array device to spatially pattern the cross-linking of the polymer films, and then dissolves away the uncross-linked regions with a solvent.
By directly patterning the polymer films, rather than using a traditional photolithographic approach based on a photoresist layer, it is possible to pattern multiple layers of polymers with widely contrasting material properties using relatively few processing steps.
Researchers said their data "suggest a clear pathway for future improvements" in the minimum achievable size and maximum achievable complexity of self-folded structures, "simply by using thinner films to enable tighter curvatures, along with improved lithographic methods to allow for patterning of smaller folds."
Instead of following the step-by-step actuation of folds in a controlled sequence characteristic of traditional origami, the new method relies on "collapse" designs, in which all folds are accomplished more or less simultaneously.