The computer programme recognises facial features in photographs; looks for similarities with facial structures for various conditions, such as Down's syndrome, Angelman syndrome, or Progeria; and returns possible matches ranked by likelihood.
Using the latest in computer vision and machine learning, the algorithm increasingly learns what facial features to pay attention to and what to ignore from a growing bank of photographs of people diagnosed with different syndromes.
While genetic disorders are each individually rare, collectively these conditions are thought to affect one person in 17. Of these, a third may have symptoms that greatly reduce quality of life. However, most people fail to receive a genetic diagnosis.
"A diagnosis can also improve estimates of how the disease might progress, or show which symptoms are caused by the genetic disorder and which are caused by other clinical issues that can be treated," said Nellaker.
Also Read
The researchers set out to teach a computer to carry out some of the same assessments objectively.
They developed a programme that - like Google, Picasa and other photo software - recognises faces in ordinary, everyday photographs.
The programme accounts for variations in lighting, image quality, background, pose, facial expression and identity. It builds a description of the face structure by identifying corners of eyes, nose, mouth and other features, and compares this against what it has learnt from other photographs fed into the system.
The algorithm does better at suggesting a diagnosis for a photo where it has previously seen lots of other photos of people with that syndrome, as it learns more with more data.
Patients also cluster where no documented diagnosis exists, potentially helping in identifying ultra-rare genetic disorders.
The finding was published in the journal eLife.