Twelve laboratories from around the world came together to put in motion the BIG Bell Test.
The experiment - coordinated by ICFO-The Institute of Photonic Sciences in Spain - powered by human randomness is aimed to demonstrate that the microscopic world is in fact as strange as quantum physics predicts.
Predictions such as particles behaving in a random way, determining their properties only when we look at them; strange instantaneous interactions at a distance - were all questioned by Einstein, who rejected them completely.
Each of these bits was used to control in real-time the experimental conditions of the labs.
More From This Section
They moved mirrors, polarising filters, waveplates - elements located on optical tables and that affect the type of measurements that are made on the different quantum systems in each lab.
Together all the participants provided scientists with millions of unpredictable, independent decisions which were used to measure their particles.
Using the sequences provided by the participants, the scientists have been able to verify whether or not their particles were intertwined by the "spooky action at a distance" that Einstein could not accept.
The Bell test states that experimentalists have to do their measurements with the help of human decisions and calculate the "Bell parameter" (known as the parameter S).
If the world is, as Einstein believes, predictable and without "spooky actions at a distance", then S cannot be greater than 2. Otherwise, the inequality has been violated, indicating the presence of intrinsically quantum phenomena.
By early afternoon, some of the labs had been able to obtain preliminary results, confirming violations of Bell's inequality, and thus refuting Einstein, giving their complete support to the predictions of quantum physics.
"The project required contributions from many people in very different areas: the scientists pushed their experiments to new limits, the public very generously gave us their time in support of science, and educators found new ways to communicate between these two groups," said Morgan Mitchell, professor at ICFO.