The so-called techni-quarks can be the yet unseen particles, smaller than the Higgs particle that will form a natural extension of the Standard Model which includes three generations of quarks and leptons.
These particles together with the fundamental forces form the basis of the observed matter in the universe.
"Nobody has seen them yet; particles that are smaller than the Higgs particle. However theories predict their existence, and now the most important of these theories have been critically tested. The result: The existence of the yet unseen particles is now more likely than ever," researchers said.
Ryttov referred to the theories that have been put forward over the last five years for the existence of particles in the universe that are smaller than the Higgs particle.
Also Read
"There seems to be no new or unseen weaknesses. My review just leaves them just stronger," he said.
Over the past 5-8 years, a handful of theories have drawn particular interest from particle physicists.
They all predict that there must be one or more types of particles that are even smaller than the Higgs particle. So far it has however not been possible to prove their existence, said researchers.
"It must happen similarly to quarks binding together to form protons and neutrons. If we can understand this force, we can explain and predict new physical phenomena like new particles," said Ryttov.
This force is called the strong force. It cannot be compared to gravity, which also has the ability to keep two objects close together, said researchers.
The effect of gravity depends on the fact that the two objects are not too far from each other, and the closer they are to each other the stronger the force of gravity will be.