The research led by Cardiff University showed that areas which have experienced strong earthquakes in the past were more likely to produce landslides when a second earthquake hit later on.
Researchers speculate that this is because damage can reside in the side of mountains after an initial earthquake, and that the consequences of this damage may only be felt when a second earthquake hits.
Predictive models that are currently used to assess the likelihood of landslides do not consider historical occurrences of previous earthquakes, and instead focus on the strength of the earthquake and the characteristics of the particular area, including the make-up of rock and the steepness of slopes.
To reach their conclusions, the team, including researchers from University of East Anglia, Durham University and the Institute of Geological and Nuclear Sciences, New Zealand, analysed data from two individual earthquakes that occurred in close-proximity to each other, in 1929 and 1968, on the South Island of New Zealand.
More From This Section
The epicentres of the two earthquakes were around 21 km apart and both triggered landslides over a large area.
Where the results were unexplained by these standard factors, the researchers investigated whether the results could be attributed to the legacy of previous events.
Their results suggested that hillslopes in regions that experienced strong ground motions in the 1929 earthquake were more likely to fail during the 1968 earthquake than would be expected on the basis of the standard factors alone.
"Our results suggest that areas that experienced strong shaking in the first earthquake were more likely to produce landslides in the second earthquake than would be expected based on the strength of shaking and hillslope characteristics alone," said Parker.
The study has been published in the journal Earth Surface Dynamics.