Researchers have demonstrated that by plucking 200 hairs in a specific pattern and density, they can induce up to 1,200 replacement hairs to grow in a mouse.
"It is a good example of how basic research can lead to a work with potential translational value," said Cheng-Ming Chuong, from the University of Southern California (USC).
"The work leads to potential new targets for treating alopecia, a form of hair loss," said Chuong.
As a dermatologist, Chen knew that hair follicle injury affects its adjacent environment, and the Chuong lab had already established that this environment in turn can influence hair regeneration.
More From This Section
Based on this combined knowledge, they reasoned that they might be able to use the environment to activate more follicles.
To test this concept, Chen devised an elegant strategy to pluck 200 hair follicles, one by one, in different configurations on the back of a mouse.
However, higher-density plucking from circular areas with diameters between three and five millimetres triggered the regeneration of between 450 and 1,300 hairs, including ones outside of the plucked region.
Working with Arthur D Lander from the University of California, Irvine, the team showed that this regenerative process relies on the principle of "quorum sensing," which defines how a system responds to stimuli that affect some, but not all members.
In this case, quorum sensing underlies how the hair follicle system responds to the plucking of some, but not all hairs.
These immune cells then secrete signalling molecules such as tumour necrosis factor alpha (TNF-a), which, at a certain concentration, communicate to both plucked and unplucked follicles that it's time to grow hair.
"The implication of the work is that parallel processes may also exist in the physiological or pathogenic processes of other organs, although they are not as easily observed as hair regeneration," said Chuong.