Don’t miss the latest developments in business and finance.

Possible drug therapy may reduce odds of developing tinnitus

Image
Press Trust of India Washington
Last Updated : Aug 30 2015 | 5:07 PM IST
Researchers have identified in an animal model the molecular mechanisms behind resilience to noise-induced tinnitus and a possible drug therapy that could reduce susceptibility to the chronic condition.
Tinnitus is typically induced by exposure to loud noise and causes whistling, clicking, roaring and other phantom sounds.
It is estimated that 5 to 15 per cent of Americans suffer from tinnitus, said Thanos Tzounopoulos, associate professor and member of the auditory research group in the Department of Otolaryngology, University of Pittsburgh's School of Medicine.
The study results build on previous research in mouse models demonstrating that tinnitus is associated with hyperactivity of dorsal cochlear nucleus (DCN) cells, which fire impulses even when there is no actual sound to perceive.
The team's work has shown that this hyperactivity is caused by a reduction in tiny channels, called KCNQ channels, through which potassium ions travel in and out of the cell.
Based on this finding, KCNQ channel activators have emerged as clinical candidates for preventing the development of tinnitus.

More From This Section

"However, a significant percentage of people are exposed to loud sounds and never develop tinnitus, and there was little known about why that is. That's what we set out to examine in this study," Tzounopoulos said.
The study found that mice that are exposed to loud noise but do not develop tinnitus show a transient reduction in KCNQ2/3 channel activity, which is followed by recovery of KCNQ2/3 activity and reduction in hyperpolarisation-activated cyclic nucleotide-gated (HCN) channel activity, another channel through which positively charged ions travel in and out of the cell.
The researchers believe a combination of drugs that enhance KCNQ2/3 channel activity and reduce HCN channel activity could promote resilience and reduce susceptibility to tinnitus.
"We have already developed novel activators of KCNQ2/3 channels," Tzounopoulos said.
The next step is to develop specific blockers of HCN channels, he said.
The study was published in the journal eLife.

Also Read

First Published: Aug 30 2015 | 5:07 PM IST

Next Story