The vehicle hovers in air by flapping its four wings 20 times per second.
Many approaches to building small aerial robots try to mimic the flight of insects such as fruit flies.
The challenge in that, explained Leif Ristroph of New York University, is that the flapping wing of a fly is inherently unstable.
To stay in flight and to manoeuvre, a fly must constantly monitor its environment to sense every gust of wind or approaching predator, adjusting its flying motion to respond within fractions of a second.
More From This Section
After some tinkering, he devised a new way of flapping-wing flight that doesn't need any sort of control or feedback system to be stable, and is akin to the swimming motions of jellyfish.
The prototype device, weighing just two grams and spanning eight centimetres in width, flies by flapping four wings that are arranged like petals on a flower.
While the up-and-down motion of the wings resembles a pulsating jelly,, the device's ultimate fluttering flight may be more similar to that of a moth. The vehicle can hover, ascend, and fly in a particular direction.
Although researchers are still far away from building a practical robot, these new results show a proof of principle, forming a blueprint for designing more sophisticated and complex vehicles, Ristroph said.
And, he added, the simplicity of design bodes well for miniaturising the vehicles.
The longstanding goal for researchers has been to shrink flying robots down to the size of a centimetre, allowing them to squeeze into small spaces and fly around undetected. The simpler the better, he said.
"And ours is one of the simplest, in that it just uses flapping wings," he added.