Transmitted through bodily fluids, the HIV-1 virus infects and destroys key immune cells, known as CD4 T cells, that would ordinarily mount a defense against the virus and initiate the antiviral activity of other immune cells.
Scientists have long known that a substance produced by CD4 T cells called Interleukin-21 (IL-21) plays an important role in the immune system by activating immune cells that specialise in killing viruses like HIV-1 and driving the production of antibodies that attack them.
Researchers from Weill Cornell Medical College, the Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University conducted two studies to uncover this effect.
The researchers created a culture from human tissues, primarily spleen and lymph node tissue. After exposing the cells to IL-21, they introduced HIV-1 and found that after 72 hours, cultures with IL-21 contained more than two-thirds less virus than those that didn't receive the treatment.
Also Read
Over the course of two weeks, the mice began producing IL-21. After 14 days, more than half of the mice with IL-21 did not display a detectable level of HIV-1.
An analysis of the results suggested that IL-21 not only jump starts the immune system but also stops the HIV-1 virus from replicating during a critical, early window of its development, when it is concentrated in one location and has not yet started to spread throughout the body.
"We are hopeful that this knowledge will help bring us one step closer to shielding patients from this deadly and complex virus," Glimcher said.
The reduction in viral load is due to the cascade of events initiated by IL-21.
The investigators found that IL-21 instructs CD4 T cells to increase the amount of a small RNA molecule. That molecule, microRNA-29 (miR-29), inhibits the replication of HIV-1, limiting the amount of virus produced from infected cells.
The study was published in the journal Nature Communications.