Researchers used a laser to form slender half centimetre long fingers out of the tape. When exposed to water, the four wispy fingers morph into a tiny robotic claw that captures water droplets.
The innovation could be used to collect water samples for environmental testing, said Babak Ziaie, a Purdue University professor of electrical and computer engineering.
The Scotch tape - made from a cellulose-acetate sheet and an adhesive - is uniquely suited for the purpose.
"It can be micro-machined into different shapes and works as an inexpensive smart material that interacts with its environment to perform specific functions," Ziaie said.
Researcher Manuel Ochoa came up with the idea. While using tape to collect pollen, he noticed that it curled when exposed to humidity. The cellulose-acetate absorbs water, but the adhesive film repels water.
"So, when one side absorbs water it expands, the other side stays the same, causing it to curl," Ziaie said.
Also Read
A laser was used to machine the tape to a tenth of its original thickness, enhancing this curling action. The researchers coated the graspers with magnetic nanoparticles so that they could be collected with a magnet.
"Say you were sampling for certain bacteria in water. You could drop a bunch of these and then come the next day and collect them," Ziaie said in a statement.
The grippers close underwater within minutes and can sample one-tenth of a millilitre of liquid.
"Although brittle when dry, the material becomes flexible when immersed in water and is restored to its original shape upon drying, a crucial requirement for an actuator material because you can use it over and over," Ziaie said.
"Various micro-structures can be carved out of the tape by using laser machining. This fabrication method offers the capabilities of rapid prototyping and batch processing without the need for complex clean-room processes," he said.