The "self-fitting" material expands with warm salt water to precisely fill bone defects, and also acts as a scaffold for new bone growth.
Currently, the most common method for filling bone defects in the head, face or jaw (known as the cranio-maxillofacial area) is autografting.
In autografting surgeons harvest bone from elsewhere in the body, such as the hip bone, and then try to shape it to fit the bone defect.
"The problem is that the autograft is a rigid material that is very difficult to shape into these irregular defects," said Melissa Grunlan, leader of the study.
More From This Section
Another approach is to use bone putty or cement to plug gaps. However, these materials become very brittle when they harden, and they lack pores, or small holes, that would allow new bone cells to move in and rebuild the damaged tissue.
To develop a better material, Grunlan and her colleagues at Texas A&M University made a shape-memory polymer (SMP) that molds itself precisely to the shape of the bone defect without being brittle. It also supports the growth of new bone tissue.
The resulting material resembled a stiff sponge, with many interconnected pores to allow bone cells to migrate in and grow.
Upon heating to 60 degree Celsius, the SMP becomes very soft and malleable. So, during surgery to repair a bone defect, a surgeon could warm the SMP to that temperature and fill in the defect with the softened material.
Then, as the SMP is cooled to body temperature (37 degree Celsius) it would resume its former stiff texture and "lock" into place.
It may also help osteoblasts, the cells that produce bone, to adhere and spread throughout the polymer. The SMP is biodegradable, so that eventually the scaffold will disappear, leaving only new bone tissue behind.
The researchers seeded the polymer with human osteoblasts. After three days, the polydopamine-coated SMPs had grown about five times more osteoblasts than those without a coating.
Furthermore, the osteoblasts produced more of the two proteins, runX2 and osteopontin, that are critical for new bone formation.