The skin model more closely resembles natural hair than existing models and may prove useful for reducing the practice of animal testing.
Karl Koehler, assistant professor at the Indiana University in the US, originally began using pluripotent stem cells from mice, which can develop into any type of cells in the body, to create organoids - miniature organs in vitro - that model the inner ear.
However, researchers discovered that they were generating skin cells in addition to inner ear tissue, and their research shifted towards coaxing cells into sprouting hair follicles.
While the researchers were unable to identify exactly which types of hairs developed on the surface of the organoid, they believe the skin grew a variety of hair follicle types similar to those present naturally on the coat of a mouse.
More From This Section
The skin organoid itself consisted of three or four different types of dermal cells and four types of epidermal cells - a diverse combination that more closely mimics mouse skin than previously developed skin tissues.
As the epidermis grew in the culture medium, it began to take the rounded shape of a cyst. The dermal cells then wrapped themselves around these cysts. When this process was disrupted, hair follicles never appeared.
Koehler thinks the mouse skin organoid technique could be used as a blueprint to generate human skin organoids.
"It could be potentially a superior model for testing drugs, or looking at things like the development of skin cancers, within an environment that's more representative of the in vivo microenvironment," said Koehler.