Researchers have for many years attempted to harvest energy from our everyday movements to allow us to trickle charge electronic devices while we are walking without the need for expensive and cumbersome gadgets such as solar panels or hand-cranked chargers.
Lightweight devices are limited in the voltage that they can produce from our low-frequency movements to a few millivolts.
Now, Jiayang Song and Kean Aw of The University of Auckland, New Zealand, have built an energy harvester that consists of a snake-shapes strip of silicone, polydimethylsiloxane, this acts as a flexible cantilever that bends back and forth with body movements.
This has been the basis of electrical generation in power stations, dynamos and other such systems since the discovery of the effect in the nineteenth century.
Also Read
Using a powerful magnet and a conducting coil with lots of turns means a higher voltage can be produced.
In order to extract the electricity generated, there is a need to include special circuitry that takes only the positive voltage and passes it along to a rechargeable battery.
Song and Aw have now side-stepped this obstacle by using a tiny electrical transformer and a capacitor, which acts like a microelectronic battery.
Their charger weighing just a few grammes oscillates, wiggling the coil back and forth through the neodymium magnetic field and produces 40 millivolts.
The transformer captures this voltage and stores up the charge in the capacitor in fractions of a second. Once the capacitor is full it discharges sending a positive pulse to the rechargeable battery, thus acting as its own rectifier.
The study was published in the International Journal Biomechatronics and Biomedical Robotics.