Researchers at the Universities of Leeds and Chicago have uncovered an important mechanism behind the generation of astrophysical magnetic fields such as that of the Sun.
Scientists have known since the 18th Century that the Sun regularly oscillates between periods of high and low solar activity in an 11-year cycle, but have been unable to fully explain how this cycle is generated, researchers said.
In the 'Information Age', it has become increasingly important to be able to understand the Sun's magnetic activity, as it is the changes in its magnetic field that are responsible for 'space weather' phenomena, including solar flares and coronal mass ejections, they said.
The research, published in the journal Nature, explains how the cyclical nature of these large-scale magnetic fields emerges, providing a solution to the mathematical equations governing fluids and electromagnetism for a large astrophysical body.
More From This Section
The mechanism, known as a dynamo, builds on a solution to a reduced set of equations first proposed in the 1950s which could explain the regular oscillation but which appeared to break down when applied to objects with high electrical conductivity.
"Previously, dynamos for large, highly conducting bodies such as the Sun would be overwhelmed by small-scale fluctuations in the magnetic field. Here, we have demonstrated a new mechanism involving a shear flow, which served to damp these small-scale variations, revealing the dominant large-scale pattern," said Steve Tobias, co-author of the research.
This mechanism could be used to describe other large, spinning astronomical bodies with large-scale magnetic fields such as galaxies.