Researchers at Cornell University in the US collaborated with the Harvard Microbiotics Laboratory, which has developed an 80-milligramme flying robot named RoboBee outfitted with a number of vision, optical flow and motion sensors.
Although the robot currently remains tethered to a power source, the Harvard researchers are developing new power sources to eliminate the restraint.
The Cornell algorithms will help make RoboBee more autonomous and adaptable to complex environments without significantly increasing its weight.
It would take the processing power of a desktop-sized computer for a robot to sense a gust of wind, using tiny hair-like metal probes imbedded on its wings, adjust and plan its flight as it attempts to land on a swaying flower, researchers said.
More From This Section
As a way to shrink the robot's power consumption, Ferrari sees the emergence of neuromorphic computer chips that process spikes of electrical current that fire in complex combinations, similar to how neurons fire inside a brain.
Ferrari's lab is developing a new class of "event-based" sensing and control algorithms that mimic neural activity and can be implemented on neuromorphic chips.
The chips allow the engineers to pack more computation into the same payload as they require significantly less power than traditional processors.
Apart from autonomy and resiliency, Ferrari's lab also plans to help outfit RoboBee with new micro devices such as a camera, expanded antennae for tactile feedback, contact sensors on the robot's feet and airflow sensors that look like tiny hairs.
The Harvard Ambulatory Microrobot, a four-legged machine just 17 millimetres long and weighing less than three grammes is already benefiting from the development.
It can run at a speed of 0.44 metres-per-second, but Ferrari's lab is developing event-based algorithms that will help complement the robot's speed with agility.