The research, reported in the journal Nature, could be the third great advance in stem cells -- a futuristic field that aims to reverse Alzheimer's, cancer and other crippling or lethal diseases.
The latest breakthrough comes from Japan, as did its predecessor which earned its inventor a Nobel Prize.
The new approach -- provided it overcomes safety hurdles -- could smash cost and technical barriers in stem-cell research, said independent commentators.
"The age of personalised medicine will have arrived."
More From This Section
Stem cells are primitive cells that, as they grow, differentiate into the various specialised cells that make up the different organs -- the brain, the heart, kidney and so on.
The goal is to create stem cells in the lab and nudge them to grow into these differentiated cells, thus replenishing organs damaged by disease or accident.
To achieve that, the stem cells would have to carry the patient's own genetic code, to identify them as friendly.
In 1998 came the first gain: the use of cloning technology -- pioneered with Dolly the sheep -- to harvest stem cells from early-stage embryos grown from the donor's own DNA.
Hugely versatile, these "pluripotent" stem cells are controversial as the method entails destroying the embryo, something opposed by religious conservatives and others.
In 2006, a team led by Shinya Yamanaka of Kyoto University, who was a co-recipient of the 2012 Nobel Prize for Medicine, created so-called induced pluripotent stem cells (iPS).
The technique had to overcome an early hurdle of causing tumours in cells and still faces problems with efficiency -- less than one percent of adult cells typically are reprogrammed successfully.