One factor that makes glioblastoma cancers so difficult to treat is that malignant cells from the tumours spread throughout the brain by following nerve fibres and blood vessels to invade new locations.
Now, researchers have learned to hijack this migratory mechanism, turning it against the cancer by using a film of nanofibres thinner than human hair to lure tumour cells away.
Instead of invading new areas, the migrating cells latch onto the specially-designed nanofibres and follow them to a location - potentially outside the brain - where they can be captured and killed.
Though it would not eliminate the cancer, the new technique reduced the size of brain tumours in animal models, suggesting that this form of brain cancer might one day be treated more like a chronic disease, researchers said.
Also Read
"We have designed a polymer thin film nanofibre that mimics the structure of nerves and blood vessels that brain tumour cells normally use to invade other parts of the brain," said Ravi Bellamkonda, lead investigator and chair of the Wallace H Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.
Treating the Glioblastoma multiforme cancer, also known as GBM, is difficult because the aggressive and invasive cancer often develops in parts of the brain where surgeons are reluctant to operate.
Even if the primary tumour can be removed, however, it has often spread to other locations before being diagnosed.
"The signalling pathways we were trying to activate to repair the spinal cord were the same pathways researchers would like to inactivate for glioblastomas," said first author of the study, Anjana Jain, an assistant professor in the Department of Biomedical Engineering at Worcester Polytechnic Institute in Massachusetts.
"Our idea was to give the tumour cells a path of least resistance, one that resembles the natural structures in the brain, but is attractive because it does not require the cancer cells to expend any more energy," she said.
Details of the technique were reported in the journal Nature Materials.