Researchers at University of California, Santa Barbara in the US have built a tiny machine called microHammer.
"Mechanical forces have been shown to impact cells a lot," said Kimberly Turner from UC Santa Barbara.
Far from being isolated units of life, cells - stem cells in particular - take cues from their environment that, for example, direct them to differentiate into one type of cell or another, or to start healing processes.
MicroHammer, a cellular-scale machine built to tap, strike, squeeze and poke individual neural progenitors elicits responses that will then be studied and recorded to add to a body of knowledge that can help unlock the mysteries of the brain.
Also Read
"This project will enable precision measurements of the physical, chemical and biological changes that occur when cells are subjected to mechanical loading, ranging from small perturbations to high-force, high-speed impacts," said Megan Valentine from UC Santa Barbara.
With the new devices and methods, Valentine said, the researchers expect to gain fundamentally new insight into the causes and progress of brain injuries due to trauma.
The MicroHammer is currently undergoing the process of characterisation, whereby the types and magnitudes of forces it can apply are being measured and recorded in anticipation of the first set of neuron-smashing experiments.
It may also lead to better prevention of such injuries by elucidating, for instance, what types of forces affect the neural cells most so helmets can be designed to buffer them.
It will have broad applications beyond brain cell research and help researchers gain insight on how forces affect other cells and tissue types.
Disclaimer: No Business Standard Journalist was involved in creation of this content