Researchers have identified the bacterial genetic pathway involved in the production of our body odor.
University of York scientists along Unilever studied the underarm microbiome and found a unique set of enzymes in the bacterium Staphylococcus hominis that is effective at breaking down sweat molecules into compounds known as thioalcohols, an important component of the characteristic body odour smell.
The team assessed the ability of over 150 bacterial isolates from underarm skin samples to produce malodorants. They then identified the genes encoding the proteins responsible for producing the thioalchohols, which are pungent in tiny amounts - as little as 1 part per trillion. One particular gene found in S. hominis was also found in two other species of Staphylococcus, which were also shown to be strong thioalcohol producers.
To confirm that these genes were necessary and sufficient for malodour production, the team moved them into the lab bacterium Escherichia coli, which was then able to produce the body odour smell when grown in the presence of human sweat molecules.
Lead researcher Dr Dan Bawdon from the University of York, said that it was surprising that this particular body odour pathway is governed by only a small number of the many bacterial species residing in the underarm.
While these thioalcohols were long known to be involved in body odour, little was known about the way they were produced by bacteria in the underarm. Traditional deodorants and antiperspirants act by non-selectively killing underarm bacteria or by blocking our sweat glands, respectively. The researchers hope that this new research can be used to produce compounds that specifically target thioalcohol production, leaving the underarm microbiota intact.
The study was presented at the Society for General Microbiology's Annual Conference in Birmingham.