Cinnamon might hold the key to delaying the onset of-or warding off-the effects of Alzheimer's disease, according to scientists at UC Santa Barbara.
Alzheimer's disease is the most common form of dementia, a neurodegenerative disease that progressively worsens over time as it kills brain cells. No cure has yet been found, nor has the major cause of Alzheimer's been identified.
However, two compounds found in cinnamon-cinnamaldehyde and epicatechin-are showing some promise in the effort to fight the disease.
According to Roshni George and Donald Graves at UC Santa Barbara, the compounds have been shown to prevent the development of the filamentous "tangles" found in the brain cells that characterize Alzheimer's.
Responsible for the assembly of microtubules in a cell, a protein called tau plays a large role in the structure of the neurons, as well as their function.
"The problem with tau in Alzheimer's is that it starts aggregating," said George, a graduate student researcher.
More From This Section
When for the protein does not bind properly to the microtubules that form the cell's structure, it has a tendency to clump together, she explained, forming insoluble fibers in the neuron.
The older we get the more susceptible we are to these twists and tangles, Alzheimer's patients develop them more often and in larger amounts.
The use of cinnamaldehyde, the compound responsible for the bright, sweet smell of cinnamon, has proven effective in preventing the tau knots. By protecting tau from oxidative stress, the compound, an oil, could inhibit the protein's aggregation. To do this, cinnamaldehyde binds to two residues of an amino acid called cysteine on the tau protein. The cysteine residues are vulnerable to modifications, a factor that contributes to the development of Alzheimer's.
While it can protect the tau protein by binding to its vulnerable cysteine residues, it can also come off, Graves added, which can ensure the proper functioning of the protein.
Oxidative stress is a major factor to consider in the health of cells in general. Through normal cellular processes, free radical-generating substances like peroxides are formed, but antioxidants in the cell work to neutralize them and prevent oxidation. Under some conditions however, the scales are tipped, with increased production of peroxides and free radicals, and decreased amounts of antioxidants, leading to oxidative stress.
Epicatechin, which is also present in other foods, such as blueberries, chocolate, and red wine, has proven to be a powerful antioxidant. Not only does it quench the burn of oxidation, it is actually activated by oxidation so the compound can interact with the cysteines on the tau protein in a way similar to the protective action of cinnamaldehyde.
"Cell membranes that are oxidized also produce reactive derivatives, such as Acrolein, that can damage the cysteines," said George.
Studies indicate that there is a high correlation between Type 2 diabetes and the incidence of Alzheimer's disease. The elevated glucose levels typical of diabetes lead to the overproduction of reactive oxygen species, resulting in oxidative stress, which is a common factor in both diabetes and Alzheimer's disease. Other research has shown cinnamon's beneficial effects in managing blood glucose and other problems associated with diabetes.
Although this research shows promise, Graves said, they are "still a long way from knowing whether this will work in human beings."
The results of their study will appear in the online early edition of the Journal of Alzheimer's Disease, and in the upcoming Volume 36, issue 1 print edition.