New genetic evidence could strengthen the link between the role of dietary fats with colon cancer progression.
The study, led by Arizona State University researcher and physician Dr. Raymond DuBois, M.D., Ph.D., has identified a molecular culprit, called peroxisome proliferator-activated receptor delta (PPAR delta), which, when deleted in a mouse model of colon cancer, stopped key steps required for the initiation and progression of tumor growth.
"This study has shown without a doubt there is a new function for a key molecule, PPAR delta, in the initiation and progression of colon cancer," DuBois, executive director of ASU's Biodesign Institute said.
"These results also provide a new rationale for developing therapeutics that could block PPAR delta to treat inflammatory bowel disease and colorectal cancer," he said.
According to the Centers for Disease Control and Prevention, dietary components high in saturated fats such as red meat are thought to be risk factors for colon cancer. Other known epidemiological risk factors are family history, inflammatory bowel disease, smoking and type-2 diabetes.
The study is published online in the Proceedings of the National Academy of Sciences.